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2. The sequence in the regeneration of a plate row is as follows: healing,
stretching of the remaining part or parts of the canal and concentration of
mesogleal cells at the wound area, fusion of parts of the canal, hollowing
out at the region of fusion and formation of plates above the new canal.

3. Cells from the remaining part or parts of a row or from neighboring
rows and also nonspecialized cells in the mesoglea take an active part in the
regeneration of plate rows.

4. Contracting muscle strands which are anchored to the plate row and
also in the mesoglea aid in the reformation of a row following its removal
in part or as a whole.

* Contribution No. 18 from the Department of Biology, Brooklyn College.
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The Fourier transform g(u) of a function f(x) is defined by

g(u) = j. f(x)ei= dx (1)

where f means integration from - oD to + X . This possesses* the inversion
formula

f(x) = 2 f g(u) e-lz dx. (2)

Evidently if we write F for the operation performed on f in (1) then (1)
and (2) can be written

g(u) = Ff(x), f(-x) = Fg(u) = F2f(x),
from which it follows that
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so the transformation is of period 4. Another way of regarding (2) is that
the operation there performed on g(u) is F-' for this is consistent with

f(x) F-1 g(u) = F-' Ff(x). (4)
Hence the operation F generates a cyclic group of order 4 which is iso-

morphic with the group of rotations of a plane about a fixed point through
multiples of a right angle. Now every continuous group of transformations
is generated by an Hermitian operator, and conversely every Hermitian
operator generates a group of unitary transformations.t Hence there exists
a continuous group of functional transformations containing the ordinary
Fourier transforms as a subgroup. In this paper the continuous group is
explicitly found. It will not, however, be necessary to make further
reference in the work that follows to the general immersion theory.

It is convenient to introduce a group
space as shown in the figure in which W
the notation x0 is assigned to the argu-
ment of a function which is generated
out of f(x) by application to it of the
functional transformation F0. In this
notation Fef(x) will be a transformed func-
tion of the argument xo which we may
write asf(xe). Evidently x is x0 and f(x) X
is more explicitly fo(xo) in this notation.
Likewise the ordinary Fourier transform becomes FJ/2 and we have u =
x/2 and

g(u) = f,2(Xr/2)
The kernel of the integral which represents the operation F will depend

on two variables: one is Xa where the operation is applied to a function
fa(xa); the other is xa.+ corresponding to the fact that the operation "ro-
tates" the function through an angle 0 in the group space. The general
integral representation of (1) becomes in this notation

fa+6(x,+0) = f K9(x,, xa,+) fa(x,) dxa. (5)

The problem is that of finding the kernel which represents the operation
F0. Before proceeding to this question we may observe that the kernel
will be necessarily singular for 0 = 0 and 0 = 7r. For 0 = 0 the operation
should reduce to the identical transformation

fa(x') = f Ko(xa, x'.) fa(xa) dxa (6)
which can only be forced into this form by the introduction of an improper
function 6(x) defined by the properties

fS (x)dx = 1 and5(x) = 0 for x O. (7
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In terms of 6(x) we have

Ko(xa, x'a) = 6(xa- X'a). (8)

Similarly for 0 = ir we must have, since xa+,r = -xa

fa+T(Xa+r) = fa(&xa)

so the kernel in this case also becomes the improper 6(x)

K,(xa, Xa+-,) = 6(Xa + Xa+T)* (9)

Otherwise one has no reason to expect singular behavior of the kernel.
In particular from the ordinary theory of Fourier transforms,

K,1/2(axc X61+-V2)exp {i x. xa + w/21
1 (10)

K3r/2(Xaw Xa+3v/2 ) = exp Vi Xa Xa+3T/2 I

An important property of the Fourier transform which it is desirable to
preserve is

f jg(u) 12 du = fjf(x)j2dx
which in our notation becomes

f I f(xo) |2dx = f f(x)2dx (11)

for all 0. Proceeding formally we have

f fe(xe)12dxe = fff f(x) Ke(x, xe) f(x') Ke(x', xe) dx dx' dxe

which will be true if

f Ko(x, xe) Ke(x', xe) dxe = 6 (x-x'). (12)

The law of combination of transformations is given by:

fo+q,(xo+,) = f fe(xo) Kp(xe, xe + w) dxo
= ff f(x) Ke(x, Xo) K.(xe, xo+,) dx dxe
= f f(x) Ko+, (x, xo+,,) dx.

The last two expressions are equivalent if

Ke+p (x, xe+,) = f Ke(x, xo)Kw(xo, xo+9) dxo. (13)

The transformation with parameter -0 must be reciprocal to that with
parameter Oso

K$.o(x, x') 6(x-x') = f Ke(x, xe) K.o(xe, x') dxo.
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This will be consistent with (12) if we require of the kernels that

K.-.8(xe, x') = K0 (x', x0). (14)

We may find the desired kernel as follows. With each variable x0 we
associate a Hermitian operator X0. In particular write Xo = X and
X,/2 = U and demand that the operators X and U obey the commutation
law

UX - XU = -i. (15)

For application to functions for x the operators X and U can be explicitly
represented by

Xf (x) = xf (x) UZf (x) =-if' (x). (16)
We then define the operator for X0 in this same representation as being
the same combination of X and U as holds for x9 in terms of x and u re-
garded as ordinary co6rdinates in the group space,

Xe=sU+cX (17)
where s = sin 0 and c = cos 0.
The proper functions P(x, x') of the operator X satisfy

XP(x, x') = x'P(x, x') or (x-x') P(x, x') = 0.

Hence P(x, x') = 0 for x 5 x' and so with a suitable normalization P(x, x')
corresponds to the kernel for the identical transformation. Similarly the
proper function for U, say Q(x, u) satisfies

- -aXQ(x, u) = uQ(x, u)

which gives Q(x, u) = ei" which if properly normalized gives the kernel
of the ordinary Fourier transform. These facts suggest that the proper
functions of XO in this representation will give the general kernel Ko(x, x0)
after a suitable normalization. These proper functions satisfy

(-isa- + cx) Ko(x, xo) = xo K0(x, x0)

which gives

Ko(x, xo) = exp c x2 + iXX}

to within a factor which is an arbitrary function of xo. Since c(@) = c(-0)
and s(O) = -s(-0), equation (14) determines the dependence on xo so we
have except for a normalizing constant C,
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K0(x,x9) = Cexp{ -2 + -2
The magnitude of C has to be determined by (12) which yields the

equation

|C| exp { - (X2 - x'2) } f exp { (x X)x@} dx6 = 6(x-x').

The integral here is divergent but is the same one which is interpreted as
having the value 27rs 5(x-x') when this formalism is applied to the ordinary
Fourier transform. Hence in a formal sense the kernel has the property
(12) provided that

ICl = (2i-rs)>"
Finally we have to verify that the kernel has the group property ex-

pressed in (13). In doing this we make the restriction that neither 6 nor
so nor ,o + 6 is equal to 0, 7r/2, wr or 37r/2. Writing C = (2irs) -'I e"8 and
c' and s' for cos so and sin sp, we have to compute

fexp2- - +2 x x2 +
2V~~~- exp - X~~ y7X +

tXeXe+, ic'

2s' . +0pj dxo.

The integral may be computed by elementary methods giving the result

ei(26BF T/4) f c
i

^>2*ex iC X2 + iXXo+ iC# 2}exp -x-X
V~27rs" I 2s" # 2f

where the ambiguous sign is - if s"/ss' > 0 and + if s'/ss' < 0 and c'
and s" are written for cos (0 + so) and sin (0 + so). This will be exactly
equal to Ke+,(x, x8+,,) if we choose a = ir/4 for angles in the first two
quadrants and a = 3X/4 for angles in the third and fourth quadrants.
Hence the kernel is completely determined for angles other than 0 or 7r to
be

Ke(x,xo) = - x2 +sixxeS- 2s } (18)

For 0 = 0 we define the functional transformation to be the identity.
For 0 = 7r we define it as

fa+ (Xa ) = ei/2 f1 (-Xa+w)
the factor ei/2 being introduced for a reason which appears in the next
paragraph.
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We observe that with the values of 6 as determined in the last para-
graph the transformation for 0 = 7r/2 differs from the ordinary Fourier
transform only because of the inclusion of the factor ei/4. This determi-
nation of the phase has the property both for the ordinary Fourier trans-
form and for our generalization that if a succession of transforms be made
such that their parameter values, 01, 02, 03 .... add up to 27r, we do not get
the identity but get instead the original function multiplied by -1. The
representation of the group that has been found is thus a double-valued
one and does not reproduce the identity until the sum of the parameter
values of the successive transforms is equal to 47r. It is evident that the
factor introduced in the special definition of the transform for 0 = 7r is
just what is needed to be in accord with these properties.

It will be of interest also to examine the behavior of fe(xo) as 0 > 0.
For 0 = 0 the transformation gives the identity, but for 0 small fe(xo) is
rather different from f(x), as may be seen from a qualitative inspection of
the properties of the kernel (18). Writing ijJ for the argument of the ex-
ponential function in (18) we see that for 0 small the coefficients of x2,
xxo and x2, will be large. Hence the kernel will be a rapidly oscillating

function of x except in the neighborhood of x = x8 Ic where - vanishes.

Hence if f(x) is a smooth function the chief contributions to fo(xo) will
come from the values of f(x) for x near to xe/c. To bring out this fact we
may write b in the form

= - 2 (X -XI/c)2 + (- -2 ) xe.

The second term is independent of x and therefore fe(xo) will contain a

factor exp { i ( - xo }. The first term has rapid oscillations except

near x = xe/c. The zeros of cos 2 (x-xc)2 that are nearest to Xo/c occur2s

for x = Xo/C V7rs/c and beyond these the kernel oscillates rapidly.
Hence for 0 small and f(x) smooth the integral of f(x) occurring in the
transform will be very roughly of the order of

Av[f(x)].P {i (I s) }

where Av Vf (x) ] is an average off(x) over a range of the order x/c- V"scT
to Xe/c + V7rs/c. As 0 o- 0 this approaches the value f(xe) so fo(xo) be-
comes qualitatively equal to

e(llsc - C/2S)X2e f(Xe)
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The exponential factor, however, becomes a highly singular function of
xo as 0 - 0 so the functional transform does not continuously approach
the identity. However, it does have the property that

Ifo(xo)l >f(x)
as 0 o- 0 for smooth functions.

It is a pleasure to acknowledge my indebtedness to helpful conversations
with several of my colleagues, especially Professors J. von Neumann, H.
Bohnenblust and S. Bochner.

* See, for example, N. Wiener, The Fourier Integral, Cambridge University Press,
p. 69 (1933).

t Stone, M. H., Proc. Nat. Acad. Sci., 16, 173 (1930); Annals of Math., 33, 643 (1932).
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In this note there are announced certain new results concerning the in-
terrelations between distributive lattices and topological spaces.
THEOREM 1. Given a distributive lattice L with zero and unit, there is a

bicompact T1-space S, a basis for whose closed sets is a lattice-homomorphic
image of L.

COROLLARY. This basis for the closed sets of S is isomorphic to L if and
only if L has the property that if a and b are different elements of L there exists
an element c of L such that one of ac and bc is zero and the other is not zero.
THEOREM 2. If R is a Ti-space then the bicompact Ti-space S obtained by

applying the process of Theorem 1 to the lattice of the closed sets of R is such
that S contains a dense subset R' homeomorphic to R; if f and g are closed
disjoint subsets of R, F and G their correspondents in S under the homeo-
morphism R ;± R', F and G the closures in S of F and G, then F and G are
also disjoint; in the sense of Cech, the homology theory of R is identical with
that of S and dimension R = dimension S.

SPECIAL CASE.1 S is a Hausdorff space (and hence normal) if and only if
R is a normal space.2
The method is as follows. Let L be a distributive lattice with zero and

unit. A collection C of elements of L with the property that the inter-
section of any finite number of elements of the collection is not zero, while
C is a proper sub-collection of no collection having the same property, will
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